Jump to content

CT-Specimen: Difference between revisions

From Encyclopedia of plastics testing
Created page with "{{Language_sel|LANG=ger|ARTIKEL=Kompaktzugprüfkörper}} {{PSM_Infobox}} <span style="font-size:1.2em;font-weight:bold;">Compact tension specimen</span> __FORCETOC__ The term ‘compact tension specimen’ or also `compact tensile test specimen` can be found in many German-language (usually somewhat older) publications. Today, the term ‘CT test specimen’ or ‘CT-specimen’ has become widely accepted, i.e. in German-language and Anglo-Saxon literatur..."
 
No edit summary
 
Line 1: Line 1:
{{Language_sel|LANG=ger|ARTIKEL=Kompaktzugprüfkörper}}
{{Language_sel|LANG=ger|ARTIKEL=CT-Prüfkörper}}
 
{{PSM_Infobox}}
{{PSM_Infobox}}
<span style="font-size:1.2em;font-weight:bold;">Compact tension specimen</span>
<span style="font-size:1.2em;font-weight:bold;">CT-specimen or written in full Compact tension (CT) specimen</span><br><br>
The Anglo-Saxon abbreviation CT stands for ‘Compact Tension’ and the CT-test specimen is referred to in German as a compact tensile test specimen.
__FORCETOC__
__FORCETOC__
The term ‘compact tension specimen’ or also `compact tensile test specimen` can be found in many German-language (usually somewhat older) publications. Today, the term ‘CT test specimen’ or ‘[[CT-Specimen|CT-specimen]]’ has become widely accepted, i.e. in German-language and Anglo-Saxon literature.


'''See also'''
==Requirements for test specimen geometry==
 
When experimentally determining fracture mechanical values (see: [[Fracture Mechanical Testing|fracture mechanical testing]]), the following basic conditions must be observed:
 
# Under the respective test conditions, the test specimen dimensions must be significantly larger than the extent of the [[Plastic Zone|plastic zone]] at the [[Crack|crack tip]].
# The force, notch expansion (see: [[Crack Opening|crack opening]]) and load-load application point displacement must be continuously measurable.
# To calculate the [[Fracture Mechanics|stress intensity factor]] ''K'' at the moment of unstable [[Crack Propagation|crack propagation]], the stress on the test [[Specimen|specimen]] and the critical crack length must be precisely determinable.
# For the corresponding test specimen geometry, the determining equation, i.e. the relationship between [[Stress|stress]] and [[Initial Crack Length|crack length]], must be known.
 
In order to fulfill these requirements, a series of specifications were established based on ASTM standard E 399 [1] and incorporated into the existing standards.
 
==Test specimen shape==
 
[[File:CT-Specimen.jpg|500px]]
{|
|- valign="top"
|width="50px"|'''Fig.''':
|width="600px" |Schematic illustration of the CT-specimen
|}
 
'''Dimension (according [1, 2]):'''
<br>
''W'' = 2 B, special shape: ''W'' = ''B'' to 4 ''B''
<br>
''s'' = 0.55
<br>
''H'' = 1.2 W
<br>
''a'' = (0.35–0.55) ''W''
<br>
''D'' = 0.25 ''W''
<br>
''G'' = 1.25 ''W''
 
'''Typical dimensions for plastics [3. 4]:'''
<br>
Example 1: Designation: ''48 mm x 50 mm-specimen''
<br>
''W'' = 40 mm, ''B'' = 10 mm, ''H'' = 48 mm, ''G'' = 50 mm, ''D'' = 10 mm, ''L'' = 12 mm, ''a'' = 18 mm, ''s'' = 22 mm, ''N'' = 2 mm
<br><br>
Example 2: Designation: ''96 mm x 100 mm-specimen''
<br>
''W'' = 80 mm, ''B'' = 3...10 mm, ''H'' = 96 mm, ''G'' = 100 mm, ''D'' = 20 mm, ''L'' = 36 mm, ''a'' = 38 mm, ''s'' = 44 mm, ''l'' = 2 mm
<br>
 
==Determination equation [1]==
 
{|
|-
|width="20px"|
|width="500px" | <math>K_I = \frac{F}{B \cdot W^{1/2}} f(a/W)</math>
|}
 
{|
|-
|width="20px"|
|width="500px" | <math>f(a/W) = 29.6(a/W)^{1/2}-185.5(a/W)^{3/2}+655.7(a/W)^{5/2}-1017(a/W)^{7/2}+638.9(a/W)^{9/2} \!\ </math>
|}
 
Designation according thickness ''B'':
<br>
CT 10, CT 15, CT 20, CT 30
 
'''Geometry criterion for metals:'''
{|
|-
|width="20px"|
|width="500px" | <math>B, a, (W-a) \geq 2.5 \bigg(\frac {K_I}{R_e}\bigg)^2</math>
|}
 
'''Geometry criterion for plastics:'''
{|
|-
|width="20px"|
|width="500px" | <math>B, a, (W-a) \geq \beta \bigg(\frac {K}{\sigma_y}\bigg)^2</math>
|}
 
It is valid: ''R''<sub>e</sub> =  ''y'' = [[Yield Stress|Yield stress]] (yield point)
 
The geometry constant ''&beta;'' depends on the material (see also: [[Geometry Criterion|geometry criterion]], [[Fracture Mechanics|fracture toughness]]).
 
A comprehensive summary of suitable test specimens for [[Fracture Mechanical Testing|fracture mechanics investigations]] on [[Plastics|plastics]] and [[Composite Materials Testing|composite materials]] is included in [[Specimen for Fracture Mechanics|fracture mechanics test specimens]].
 
==See also==


* [[Multipurpose Test Specimen|Multipurpose test specimen]]
* [[Specimen for Fracture Mechanics|Specimen for fracture mechanics tests]]
* [[Specimen]]
* Compact tension specimen
* [[Test Piece|Test piece]]
* [[Geometry Function|Geometry function]]
* [[RCT-Specimen|RCT-specimen]]
* [[Laser Double-Scanner|Laser double-scanner]]
* [[Specimen for Fracture Mechanics Tests|Specimen for fracture mechanics tests]]
* [[Hybrid Methods, Examples|Hybrid methods, examples]]
* [[Laser Multi-Scanner|Laser multi-scanner]]
* [[Toughness Temperature Dependence|Toughness temperature dependence]]




'''References'''
'''References'''


* [[Grellmann, Wolfgang|Grellmann, W.]], [[Seidler, Sabine|Seidler, S.]] (Eds.): Kunststoffprüfung. Carl Hanser Verlag, München (2024) 4th Edition, p. 242 (ISBN 978-3-446-44718-9; E-Book: ISBN 978-3-446-48105-3; see [[AMK-Büchersammlung|AMK-Library]] under A 23)
{|
* [https://www.researchgate.net/profile/Wolfgang-Grellmann Grellmann, W.], [https://de.wikipedia.org/wiki/Sabine_Seidler Seidler, S.] (Eds.): Polymer Testing. Carl Hanser, Munich (2022) 3rd Edition, pp. 233/234 (ISBN 978-1-56990-806-8; E-Book: ISBN 978-1-56990-807-5; see [[AMK-Büchersammlung|AMK-Library]] under A 22)  
|-valign="top"
|[1]
|ASTM E 399 (2024): Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
|-valign="top"
|[2]
|[[Blumenauer, Horst|Blumenauer, H.]], Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart (1993) 3rd Edition, (ISBN 3-342-00659-5; see [[AMK-Büchersammlung|AMK-Library]] under E 29-3)
|-valign="top"
|[3]
|[[Grellmann, Wolfgang|Grellmann, W.]], [[Seidler, Sabine|Seidler, S.]] (Eds.): Deformation and Fracture Behaviour of Polymers. Springer, Berlin Heidelberg (2001) (ISBN 978-3-540-41247-6; e-Book: ISBN 978-3-662-04556-5; see [[AMK-Büchersammlung|AMK-Library]] under A 7)  
|-valign="top"
|[4]
|[https://www.researchgate.net/profile/Wolfgang-Grellmann Grellmann, W.], [https://de.wikipedia.org/wiki/Sabine_Seidler Seidler, S.] (Eds.): Polymer Testing. Carl Hanser, Munich (2022) 3rd Edition, pp. 233/234 (ISBN 978-1-56990-806-8; E-Book: ISBN 978-1-56990-807-5; see [[AMK-Büchersammlung|AMK-Library]] under A 22)  
|}


[[Category:Fracture Mechanics]]
[[Category:Specimen]]
[[Category:Specimen]]

Latest revision as of 06:51, 15 December 2025

Sprachauswahl/Language selection
Dieser Artikel ist auch auf Deutsch verfügbar CT-Prüfkörper
A service provided by
verweis=
Polymer Service GmbH Merseburg
Tel.: +49 3461 30889-50
E-Mail: info@psm-merseburg.de
Web: https://www.psm-merseburg.de
Our further education offers:
https://www.psm-merseburg.de/weiterbildung
PSM on Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg

CT-specimen or written in full Compact tension (CT) specimen

The Anglo-Saxon abbreviation CT stands for ‘Compact Tension’ and the CT-test specimen is referred to in German as a compact tensile test specimen.


Requirements for test specimen geometry

When experimentally determining fracture mechanical values (see: fracture mechanical testing), the following basic conditions must be observed:

  1. Under the respective test conditions, the test specimen dimensions must be significantly larger than the extent of the plastic zone at the crack tip.
  2. The force, notch expansion (see: crack opening) and load-load application point displacement must be continuously measurable.
  3. To calculate the stress intensity factor K at the moment of unstable crack propagation, the stress on the test specimen and the critical crack length must be precisely determinable.
  4. For the corresponding test specimen geometry, the determining equation, i.e. the relationship between stress and crack length, must be known.

In order to fulfill these requirements, a series of specifications were established based on ASTM standard E 399 [1] and incorporated into the existing standards.

Test specimen shape

Fig.: Schematic illustration of the CT-specimen

Dimension (according [1, 2]):
W = 2 B, special shape: W = B to 4 B
s = 0.55
H = 1.2 W
a = (0.35–0.55) W
D = 0.25 W
G = 1.25 W

Typical dimensions for plastics [3. 4]:
Example 1: Designation: 48 mm x 50 mm-specimen
W = 40 mm, B = 10 mm, H = 48 mm, G = 50 mm, D = 10 mm, L = 12 mm, a = 18 mm, s = 22 mm, N = 2 mm

Example 2: Designation: 96 mm x 100 mm-specimen
W = 80 mm, B = 3...10 mm, H = 96 mm, G = 100 mm, D = 20 mm, L = 36 mm, a = 38 mm, s = 44 mm, l = 2 mm

Determination equation [1]

Designation according thickness B:
CT 10, CT 15, CT 20, CT 30

Geometry criterion for metals:

Geometry criterion for plastics:

It is valid: Re = y = Yield stress (yield point)

The geometry constant β depends on the material (see also: geometry criterion, fracture toughness).

A comprehensive summary of suitable test specimens for fracture mechanics investigations on plastics and composite materials is included in fracture mechanics test specimens.

See also


References

[1] ASTM E 399 (2024): Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials
[2] Blumenauer, H., Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart (1993) 3rd Edition, (ISBN 3-342-00659-5; see AMK-Library under E 29-3)
[3] Grellmann, W., Seidler, S. (Eds.): Deformation and Fracture Behaviour of Polymers. Springer, Berlin Heidelberg (2001) (ISBN 978-3-540-41247-6; e-Book: ISBN 978-3-662-04556-5; see AMK-Library under A 7)
[4] Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser, Munich (2022) 3rd Edition, pp. 233/234 (ISBN 978-1-56990-806-8; E-Book: ISBN 978-1-56990-807-5; see AMK-Library under A 22)