Jump to content

TDCB-Specimen

From Encyclopedia of plastics testing
Sprachauswahl/Language selection
Dieser Artikel ist auch auf Deutsch verfügbar TDCB-Prüfkörper
A service provided by
verweis=
Polymer Service GmbH Merseburg
Tel.: +49 3461 30889-50
E-Mail: info@psm-merseburg.de
Web: https://www.psm-merseburg.de
Our further education offers:
https://www.psm-merseburg.de/weiterbildung
PSM on Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg

TDCB specimen


The Anglo-Saxon abbreviation TDCB stands for "Tapered-Double-Cantilever Beam".

Test specimen shape

Various variations of the same basic shape can be found in the literature [1–3].

L – 200...240 mm
a0 50...65 mm
B – 10 mm
Bn 2.5 mm
groove profile – rectangular
Bild 1: Schematische Darstellung des TDCB-Prüfkörpers


Determination of fracture mechanical properties of TDCB-specimens

Determination equation

with the load due to tensile force F and:

A comprehensive compilation of suitable test specimens for fracture mechanics tests on plastics and composites is given in test specimens for fracture mechanics tests.

See also


References

[1] Blumenauer, H., Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart (1984) 1st Edition, p. 109 and p. 146 (ISBN VLN 152-915/61/82; see AMK-Library under E 29-1)
[2] Blumenauer, H., Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart (1987) 2nd Edition, pp. 127–129 and p. 140 (ISBN 3-342-00096-1; see AMK-Library under E 29-2)
[3] Brown, E. N., Sottos, N. R., White, S. R.: Fracture Testing of a Self-healing Polymer Composite. Experimental Mechanics 42 (2002), No. 4, 372–379, DOI: https://doi.org/10.1007/BF02412141
[4] Kobayashi, T., Broutman, L. J.: Fracture Studies in Rubber-modified Acrylics. 1 Experimental Method: Design of Sandwich-tapered Double-cantilever Beam Cleavage Specimens. Journal of Applied Polymer Science 17 (1973) 1909–1917
[5] Yaniv, G., Daniel, I. M.: Height-tapered Double Cantilever Beam Specimen for Study of Rate Effects on Fracture Toughness of Composites. In: Whitcomb, J. D. (Eds.): Composite Material: Testing and Design (Eight Conference), ASTM STP 972. ASTM, Philadelphia (1988), pp. 241–258
[6] Hwang, J. H., Kwon, O., Lee, C. S., Hwang, W.: Interlaminar Fracture and Low-velocity Impact of Carbon/Epoxy Composite Materials. Mechanics of Composite Materials 36 (2000) 117–130, DOI: https://doi.org/10.1007/BF02681828
[7] White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., Viswanathan, S.: Autonomic Healing of Polymer Composites. Nature 409 (2001) 794–797, DOI: https://doi.org/10.1038/35057232
[8] El-Bagory, T. M., El-Fadaly, M. S., Younan, M. Y. A., Abdel-Latif, L. A.: Influence of Crack Orientation and Crosshead Speed on the Fracture Toughness of PVC Pipe Materials. Journal of Pressure Vessel Technology – Transactions of the ASME 126 (2004) 489–496, DOI: https://doi.org/10.1115/1.1811110


Additional literature references on the application of TDCB test specimens:

Polymers and Polymer Composites

  • Daniel, I. M., Yaniv, G., Auser, J. W.: Rate Effects on Delamination Fracture Toughness of Graphite/Epoxy Composites. Composite Structures 4 (1987) 258–272, https://doi.org/10.1007/978-94-009-3457-3_20
  • Hwang, J. H., Lee, C. S., Hwang, W.: Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials. Applied Composite Materials 8 ( 2001) 411–433; https://doi.org/10.1023/A:1012663722334
  • Gamby, D., Delaumenie, V.: Measurement and Modelling of Crack Propagation Velocity in a Viscoelastic Matrix Composite. Composites Part A – Applied Science and Manufacturing 28 (1997) 875–881, https://doi.org/10.1016/S1359-835X(97)00054-7
  • Li, G. Q., Meng, H., Hu, J.: Healable Thermoset Polymer Composite Embedded with Stimuli-responsive Fibres. Journal of the Royal Society Interface 9 (2012) 3279–3287; https://doi.org/10.1098/rsif.2012.0409
  • Billiet, S., van Camp, W., Hillewaere, X. K. D., Rahier, H., Du Prez, F. E.: Development of Optimized Autonomous Self-healing Systems for Epoxy Materials Based on Maleimide Chemistry. Polymer 53 (2012) 2320–2326, https://doi.org/10.1016/j.polymer.2012.03.061
  • Jin, H. H., Mangun, C. L., Stradley, D. S., Moore, J. S., Sottos, N. R., White, S. R.: Self-healing Thermoset Using Encapsulated Epoxy-Amine Healing Chemistry. Polymer 53 (2012) 581–587, https://doi.org/10.1016/j.polymer.2011.12.005
  • Neuser, S., Michaud, V., White, S. R.: Improving Solvent-based Self-healing Materials Through Shape Memory Alloys. Polymer 53 (2012) 370–378, https://doi.org/10.1016/j.polymer.2011.12.020
  • Coope, T. S., Mayer, U. F. J., Wass, D. F., Trask, R. S., Bond, I. P.: Self-healing of an Epoxy Resin Using Scandium (III) Triflate as a Catalytic Curing Agent. Advanced Functional Materials 21 (2011) 4624–4631, https://doi.org/10.1002/adfm.201101660
  • Brown, E. N.: Use of the Tapered Double-cantilever Beam Geometry for Fracture Toughness Measurements and its Application to the Quantification of Self-healing. Journal of Strain Analysis for Engineering Design 46 (2011) 167–186, http://dx.doi.org/10.1177/0309324710396018
  • Li, H. Y., Wang, R. G., Liu, W. B.: Toughening Self-healing Epoxy Resin by Addition of Microcapsules. Polymer & Polymer Composites 19 (2011) 223–226, https://doi.org/10.1177/0967391111019002-326
  • Mangun, C. L., Mader, A. C., Sottos, N. R., White, S. R.: Self-healing of a High temperature Cured Epoxy Using Poly(dimethylsiloxane) Chemistry. Polymer 51 (2010) 4063–4068, https://doi.org/10.1016/j.polymer.2010.06.050
  • Brown, E. N., White, S. R., Sottos, N. R.: Fatigue Crack Propagation in Microcapsuletoughened Epoxy. Journal of Materials Science 41 (2006) 6266–6273, https://doi.org/10.1007/s10853-006-0512-y
  • Brown, E. N.: Microcapsule Induced Toughening in a Self-healing Polymer Composite. Journal of Materials Science 39 (2004) 1703–1710, https://doi.org/10.1023/B:JMSC.0000016173.73733.dc
  • Kessler, M. R., Sottos, N. R., White, S. R.: Self-healing Structural Composite Materials. Composites Part A – Applied Science and Manufacturing 34 (2003) 743–753, https://doi.org/10.1016/S1359-835X(03)00138-6
  • Meure, S., Wu, D. Y., Furman, S.: Polyethylene-co-methacrylic Acid Healing Agents for Mendable Epoxy Resins. Acta Materialia 57 (2009) 4312–4320, https://doi.org/10.1016/j.actamat.2009.05.032

Polymer Adhesives

  • Ebewele, R., River, B., Koutsky, J.: Tapered Double Cantilever Beam Fracture Tests of Phenolic-Wood Adhesive Koints. Wood and Fiber Science 11/3 (1979) 197–213, https://www.fpl.fs.usda.gov/documnts/pdf1979/ebewe79a.pdf
  • Ebewele, R. O., River, B. H., Koutsky, J. A.: Tapered Double Cantilever Beam Fracture Tests of Phenolic-Wood Adhesive Joints: Part II. Effects of Surface Roughness, the Nature of Surface Roughness, and Surface Aging on Joint Fracture Energy. Wood and Fiber Science 12/1 (1980) 40–65, https://www.fpl.fs.usda.gov/documnts/pdf1980/ebewe80a.pdf
  • Blackman, B. R. K., Hadavinia, H., Kinloch, A. J., Paraschi, M., Williams, J. G.: The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (TDCB) Test. Engineering Fracture Mechanics 70 (2003) 233–248, https://doi.org/10.1016/S0013-7944(02)00031-0
  • Meiler, M., Roche, A. A., Sautereau, H.: Tapered Double Cantilever Beam Test Used as a Practical Adhesion Test for Metal/Adhesive/Metal Systems. Journal of Adhesion Science and Technology, 13/7 (1999) 773–788, https://doi.org/10.1163/156856199X01009
  • Davalos, J. F., Madabhusi-Raman, P., Qiao, P. Z., Wolcott; M. P.: Compliance Rate Change of Tapered Double Cantilever Beam Specimen with Hybrid Interface Bonds. Theoretical and Applied Fracture Mechanics 29 (1998) 125–139, https://doi.org/10.1016/S0167-8442%2898%2900024-X
  • Jin, H., Miller, G. M., Pety, S. J., Griffin, A. S., Stradley, D. S., Roach, D., Sottos, N. R., White, S. R.: Fracture Behavior of a Self-healing, Toughened Epoxy Adhesive. International Journal of Adhesion and Adhesives 44 (2013) 157–165; https://doi.org/10.1016/j.ijadhadh.2013.02.015
  • Cho, J. U., Kinloch, A., Blackman, B., Sanchez, F. S. R., Han, M. S.: High-strain Fracture of Adhesively Bonded Composites Joints in DCB and TDCB Specimens. International Journal of Automotive Technology 13 (2012) 1127–1131; https://doi.org/10.1007/s12239-012-0115-3
  • Marzi, S., Biel, A., Stigh, U.: On Experimental Methods to Investigate the Effect of Layer Thickness on the Fracture Behavior of Adhesively Bonded Joints. International Journal of Adhesion and Adhesives 31 (2011) 840–850; • DOI:10.1016/J.IJADHADH.2011.08.004
  • da Silva, L. F. M., Esteves, V. H. C., Chaves, F. J. P.: Fracture Toughness of a Structural Adhesive Under Mixed Mode Loadings. Materialwissenschaft und Werkstofftechnik 42 (2011) 460–470, https://doi.org/10.1002/mawe.201100808
  • Karac, A., Blackman, B. R. K., Cooper, V., Kinloch, A. J., Sanchez, S. R., Teo, W. S., Ivankovic, A.: Modelling the Fracture Behaviour of Adhesively-bonded Joints as a Function of Test Rate. Engineering Fracture Mechanics 78 (2011) 973–989, https://doi.org/10.1016/J.ENGFRACMECH.2010.11.014
  • Jin, H., Miller, G. M., Sottos, N. R., White, S. R.: Fracture and Fatigue Response of a Self-healing Epoxy Adhesive. Polymer 52 (2011) 1628–1634, https://doi.org/10.1016/j.polymer.2011.02.011
  • Wong, C. K. Y., Leung, S. Y. Y., Fan, H. B., Yuen, M. M. F.: Synergistic Toughening of Epoxy-Copper Interface Using a Thiol-based Coupling Layer. Journal of Adhesion Science and Technology 25 (2011) 2081–2099
  • Blackman, B. R. K., Kinloch, A. J., Sanchez, F. S. R., Teo, W. S., Williams, J. G.: The Fracture Behaviour of Structural Adhesives Under High Rates of Testing. Engineering Fracture Mechanics 76 (2009) 2868–2889, https://doi.org/10.1016/J.ENGFRACMECH.2009.07.013
  • Suarez, J. C., Lopez, F., Miguel, S., Pinilla, P., Herreros, M. A.: Determination of the Mixed-mode Fracture Energy of Elastomeric Structural Adhesives: Evaluation of Debonding Buckling in Fibre-Metal Hybrid Laminates. Fatigue & Fracture of Engineering Materials & Structures 32 (2009) 127–140, https://doi.org/10.1111/j.1460-2695.2008.01317.x
  • Kawashita, L. F., Kinloch, A. J., Moore, D. R., Williams, J. G.: The Influence of Bond Line Thickness and Peel Arm Thickness on Adhesive Fracture Toughness of Rubber Toughened Epoxy-Aluminium Alloy Laminates. International Journal of Adhesion and Adhesives 28 (2008) 199–210, https://doi.org/10.1016/J.IJADHADH.2007.05.005
  • Kawashita, L. F., Kinloch, A. J., Moore, D. R., Williams, J. G.: A Critical Investigation of the Use of a Mandrel Peel Method for the Determination of Adhesive Fracture Toughness of Metal-Polymer Laminates. Engineering Fracture Mechanics 73 (2006) 2304–2323, https://doi.org/10.1016/J.ENGFRACMECH.2006.04.025
  • Hadavinia, H., Kawashita, L., Kinloch, A. J., Moore, D. R., Williams, J. G.: A Numerical Analysis of the Elastic-Plastic Peel Test. Engineering Fracture Mechanics 73 (2006) 2324–2335, https://doi.org/10.1016/j.engfracmech.2006.04.022
  • Kawashita, L. F., Moore, D. R., Williams, J. G.: Analysis of Peel Arm Curvature for the Determination of Fracture Toughness in Metal-Polymer Laminates. Journal of Materials Science 40 (2005) 4541–4548, https://doi.org/10.1007/s10853-005-0856-8
  • Kawashita, L. F., Moore, D. R., Williams, J. G.: The Measurement of Cohesive and Interfacial Toughness for Bonded Metal Joints with Epoxy Adhesives. Composite Interfaces 12 (2005) 837–852, https://doi.org/10.1163/156855405774984093
  • Jyoti, A., Gibson, R. F., Newaz, G. M.: Experimental Studies of Mode I Energy Release Rate in Adhesively Bonded Width Tapered Composite DCB Specimens. Composites Science and Technology 65 (2005) 9–18, https://doi.org/10.1016/j.compscitech.2004.04.006
  • Leung, S. Y. Y., Lam, D. C. C., Luo, S. J., Wong, C. P.: The Role of Water in Delamination in Electronic Packages: Degradation of Interfacial Adhesion. Journal of Adhesion Science and Technology 18 (2004) 1103–1121
  • Bouchet, J., Roche, A. A., Jacquelin, E.: How do Residual Stresses and Interphase Mechanical Properties Affect Practical Adhesion of Epoxy Diamine/Metallic Substrate Systems? Journal of Adhesion Science and Technology 16 (2002) 1603–1623 https://doi.org/10.1163/15685610260255242
  • Bouchet, J., Roche, A. A., Jacquelin, E.: The Role of the Polymer/Metal Interphase and its Residual Stresses in the Critical Strain Energy Release Rate (Gc) Determined Using a Three-Point Flexure Test. Journal of Adhesion Science and Technology 15 (2001) 345–369 https://doi.org/10.1163/156856101750196784
  • Meiller, M., Roche, A. A., Sautereau, H.: Tapered Double Cantilever Beam Test Used as a Practical Adhesion Test for Metal/Adhesive/Metal Systems. Journal of Adhesion Science and Technology 13 (1999) 773–788 https://doi.org/10.1163/156856199X01009
  • Phipps, M. A., Pritchard, G., Aboutorabi, A.: The Role of Particle Strength and Filler Volume Fraction in the Fracture of Alumina-Trihydrate Filled Epoxy-resins. Polymer & Polymer Composites 3 (1995) 71–77 https://doi.org/10.1177/147823919500300201
  • Parry, T. V., Wronski, A. S.: A Technique for the Measurement of Adhesive Fracture Energy by the Blister Method. Journal of Adhesion 37 (1992) 251–260 https://doi.org/10.1080/00218469208033072
  • Brochu, A. B. W., Evans, G. A., Reichert, W. M.: Mechanical and Cytotoxicity Testing of Acrylic Bone Cement Embedded with Microencapsulated 2-Octyl Cyanoacrylate. Journal of Biomedical Materials Research Part B – Applied Biomaterials 102 (2014) 181–189; http://dx.doi.org/10.1002/jbm.b.32994
  • Martiny, Ph., Lani, F., Kinloch, A. J., Pardoen, T.: A Maximum Stress at a Distance Criterion for the Prediction of Crack Propagation in Adhesively-Bonded Joints. Engineering Fracture Mechanics 97 (2013) 105–135; https://doi.org/10.1016/j.engfracmech.2012.10.025
  • Marzi, S., Hesebeck, O., Brede, M., Kleiner, F.: A Rate-Dependent Cohesive Zone Model for Adhesively Bonded Joints Loaded in Mode I. Journal of Adhesion Science and Technology 23 (2009) 881–898; • DOI:10.1163/156856109X411238
  • Bland, D. J., Kinloch, A. J., Stolojan, V., Watts, J. F.: Failure mechanisms in adhesively bonded aluminium: An XPS and PEELS study. Surface and Interface, Analysis 40 (2008) 128–131; https://doi.org/10.1002/sia.2651
  • Park, S., Dillard, D. A.: Development of a simple mixed-mode fracture test and the resulting fracture energy envelope for an adhesive bond. International Journal of Fracture 148 (2007) 261–271; https://doi.org/10.1007/s10704-008-9200-z