SUMPTER and TURNER – J-Integral Estimation Method
| A service provided by |
|---|
|
| Polymer Service GmbH Merseburg |
| Tel.: +49 3461 30889-50 E-Mail: info@psm-merseburg.de Web: https://www.psm-merseburg.de |
| Our further education offers: https://www.psm-merseburg.de/weiterbildung |
| PSM on Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg |
J-integral estimation method according to SUMPTER and TURNER (ST)
Basic assumption
J-integral estimation methods are used for the determination of fracture-mechanical characteristic values according to the J-integral concept.
Sumpter and Turner [1] proposed to determine JIST values by splitting the total energy AG introduced by the external force into two parts, i.e., an elastic Ael and a plastic Apl part with:
AG = Ael + Apl
| Fig. 1: | Determination of J-integral according to Sumpter and Turner [1, 2] |
Determination equation for SENB and CT specimen
The determination of JIST values is then given by the following equation:
valid for 0 < a/W < 1
f(a/W) = 2 für a/w > 0.45
with:
| Ael | elastic part of the deformation energy | |
| Apl | plastic part of the deformation energy | |
| ηel | elastic factor | |
| ηpl | plastic factor and | |
| ηel, ηpl | = f(a/W) |
ηel can be determined from the elastic part of the load–load point displacement curve
ηpl is for three-point bending test specimens for a/W > 0.2 ηpl = 2
ηpl is for compact tension specimens for a/W > 0,6 ηpl = 2 (see ASTM STP 700)
For SENB test specimens, the following relationship applies for ηel:
with: f (a/W) as correction function
In the literature, Schwalbe [3] and Blumenauer [4] give the following correlation (table):
Table: Values for ηel for different test specimens and a/W ratios
| ηel | a/W | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
|---|---|---|---|---|---|---|---|
| SENB | s/W = 4.0 | 1.4 | 1.7 | 1.9 | 2.0 | 2.0 | 1.9 |
| CT | H/W = 1.2 | 3.7 | 2.7 | 2.4 | 2.3 | 2.2 | 2.2 |
| Fig. 2: | Correlation between elastic factor and a/W-ratio [5, 6] |
ηel is defined for the SENB test specimen as follows:
ηel = 5 (a/W)2 + 5.5 (a/W) + 0.5
Jpl can also be determined using the COD test technique, but then requires knowledge of the rotation factor n:
Evaluation procedure
The experimental procedure for determining geometry-independent fracture-mechanical characteristic values with the aid of the instrumented Charpy impact test (ICIT) under dynamic loading is explained in detail in the validated procedure of the testing laboratory "Mechanical Testing of Plastics": MPK procedure "MPK-ICIT" [7].
See also
- J-integral concept
- J-Integral evaluation method (overview)
- J-integral estimation methods of
References
| [1] | Sumpter, J. D. G., Turner, C. E.: ASTM STP 601 (1976): Cracks and Fracture. Method for Laboratory Determination of Jc. p. 3–18 |
| [2] | Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser, Munich (2022) 3. Edition, 251–253, (ISBN 978-1-56990-806-8; e-book 978-1-56990-807-5) (see AMK-Library under A 22) |
| [3] | Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Verlag, München Wien (1980), (ISBN 3-446-12983-9; siehe AMK-Library under E 15) |
| [4] | Blumenauer, H., Pusch, G.: Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig Stuttgart (2003) 3rd Edition (see AMK-Library under E 29-3) |
| [5] | Sumpter, J. D. G.: Elastic-Plastic Fracture Analysis and Design Using the Finite Element Method. Ph.D thesis University of London (1974) |
| [6] | Chipperfield, C. G.: A Summary and Comparison of J Estimation Procedure. Journal of Testing and Evaluation (JTEVA), Vol. 6 No. 4 July (1978) 253–259 (https://doi.org/10.1520/JTE10951J) |
| [7] | MPK procedure "MPK-ICIT" (2016-03): Testing of Plastics – Instrumented Charpy Impact Test (ICIT): Procedure for Determining the Crack Resistance Behaviour Using the Instrumented Impact Test;
|


