KANAZAWA – J-Integral Estimation Method
| A service provided by |
|---|
|
| Polymer Service GmbH Merseburg |
| Tel.: +49 3461 30889-50 E-Mail: info@psm-merseburg.de Web: https://www.psm-merseburg.de |
| Our further education offers: https://www.psm-merseburg.de/weiterbildung |
| PSM on Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg |
J-integral estimation method according to KANAZAWA (K)
Basic assumption of the estimation method
J-integral estimation methods are used for the determination of fracture mechanics values according to the J-integral concept [1].
In the J-integral evaluation method according to Kanazawa [2–4], a complementary deformation energy AK is introduced to determine JIK values. He modified the calculation approach according to RICE, since RICE obtained too small J values for small crack lengths. KANAZAWA derived a correction function for this.
| with |
Thus, the J value generally results in:
| Fig. 1: | Determination of J integral according to KANAZAWA |
Determination equation for Single-Edge-Notched Bend (SENB) specimen
For the specific case of the SENB test specimen, the following then applies:
with: AK = Fmax fmax − AG as complementary deformation energy
for 0 < a/W < 1 and
The significance of α for the determination of fracture-mechanical parameters with the aid of three-point bending test specimens can be derived from the graphical representation in Fig. 2 using the corresponding geometry function f(a/W) from Tada [6].
| Fig. 2: | Geometry function of J-integral evaluation procedure according to method of KANAZAWA in dependence on a/W ratio for three-point bend loading and s/W = 4 |
Determination equation for Compact Tension (CT) specimen
The following determination equations apply to the CT specimen:
| with |
As a result of extensive investigations on the crack length dependence of the J-integral, it was proven in [1, 5] that the J evaluation methods of KANAZAWA and RICE, PARIS and MERKLE provide too high fracture-mechanical characteristic values for small crack lengths.
See also
- J-integral concept
- J-Integral evaluation method (overview)
- J-integral estimation methods of
'References
| [1] | Grellmann, W.: Beurteilung der Zähigkeitseigenschaften von Polymerwerkstoffen durch bruchmechanische Kennwerte. Habilitation (1986), Technische Hochschule „Carl Schorlemmer“ Leuna-Merseburg und Wiss. Zeitschrift TH Merseburg 28 (1986), H 6, p. 787–788 |
| [2] | Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Munich Vienna (1980), (ISBN 3-446-12983-9; see AMK-Library under E 15) |
| [3] | Kanazawa, T., Machida, D., Onozuka, M., Kaned, S.: Report of the University of Tokyo HWx-779-75 in [4] |
| [4] | Kromp, K., Pabst, R. F.: Über die Ermittlung von J-Integralwerten bei keramischen Werkstoffen im Hochtemperaturbereich. Materialprüfung 22 (1980) 6, p. 241–245 |
| [5] | Grellmann, W., Sommer, J.-P.: Beschreibung der Zähigkeitseigenschaften von Polymerwerkstoffen mit dem J-Integralkonzept. Institut für Mechanik, Berlin und Karl-Marx-Stadt, Fracture Mechanics, Micromechanics and Coupled Fields – (FMC)-Series (1985) 17, p. 48–72 |
| [6] | Tada, H., Paris, P. C., Irwin, G. R.: The Stress Analysis of Cracks Handbook. Hellertown Pennsylvania, Del. Res. Corp. (1973) |


