Jump to content

KANAZAWA – J-Integral Estimation Method

From Encyclopedia of plastics testing
Sprachauswahl/Language selection
Dieser Artikel ist auch auf Deutsch verfügbar Auswertemethode nach Kanazawa
A service provided by
verweis=
Polymer Service GmbH Merseburg
Tel.: +49 3461 30889-50
E-Mail: info@psm-merseburg.de
Web: https://www.psm-merseburg.de
Our further education offers:
https://www.psm-merseburg.de/weiterbildung
PSM on Wikipedia: https://de.wikipedia.org/wiki/Polymer Service Merseburg

J-integral estimation method according to KANAZAWA (K)


Basic assumption of the estimation method

J-integral estimation methods are used for the determination of fracture mechanics values according to the J-integral concept [1].

In the J-integral evaluation method according to Kanazawa [2–4], a complementary deformation energy AK is introduced to determine JIK values. He modified the calculation approach according to RICE, since RICE obtained too small J values for small crack lengths. KANAZAWA derived a correction function for this.

with

Thus, the J value generally results in:


Fig. 1: Determination of J integral according to KANAZAWA

Determination equation for Single-Edge-Notched Bend (SENB) specimen

For the specific case of the SENB test specimen, the following then applies:

with: AK = Fmax fmaxAG as complementary deformation energy

for 0 < a/W < 1 and

The significance of α for the determination of fracture-mechanical parameters with the aid of three-point bending test specimens can be derived from the graphical representation in Fig. 2 using the corresponding geometry function f(a/W) from Tada [6].

Fig. 2: Geometry function of J-integral evaluation procedure according to method of KANAZAWA in dependence on a/W ratio for three-point bend loading and s/W = 4

Determination equation for Compact Tension (CT) specimen

The following determination equations apply to the CT specimen:






with

As a result of extensive investigations on the crack length dependence of the J-integral, it was proven in [1, 5] that the J evaluation methods of KANAZAWA and RICE, PARIS and MERKLE provide too high fracture-mechanical characteristic values for small crack lengths.

See also

BEGLEY and LANDES
RICE, PARIS and MERKLE
SUMPTER and TURNER
MERKLE and CORTEN (MC)


'References

[1] Grellmann, W.: Beurteilung der Zähigkeitseigenschaften von Polymerwerkstoffen durch bruchmechanische Kennwerte. Habilitation (1986), Technische Hochschule „Carl Schorlemmer“ Leuna-Merseburg und Wiss. Zeitschrift TH Merseburg 28 (1986), H 6, p. 787–788
[2] Schwalbe, K.-H.: Bruchmechanik metallischer Werkstoffe. Carl Hanser Munich Vienna (1980), (ISBN 3-446-12983-9; see AMK-Library under E 15)
[3] Kanazawa, T., Machida, D., Onozuka, M., Kaned, S.: Report of the University of Tokyo HWx-779-75 in [4]
[4] Kromp, K., Pabst, R. F.: Über die Ermittlung von J-Integralwerten bei keramischen Werkstoffen im Hochtemperaturbereich. Materialprüfung 22 (1980) 6, p. 241–245
[5] Grellmann, W., Sommer, J.-P.: Beschreibung der Zähigkeitseigenschaften von Polymerwerkstoffen mit dem J-Integralkonzept. Institut für Mechanik, Berlin und Karl-Marx-Stadt, Fracture Mechanics, Micromechanics and Coupled Fields – (FMC)-Series (1985) 17, p. 48–72
[6] Tada, H., Paris, P. C., Irwin, G. R.: The Stress Analysis of Cracks Handbook. Hellertown Pennsylvania, Del. Res. Corp. (1973)